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I. INTRODUCTION 
Fixed point theorems are irrevocable in the theory of non linear analysis. In this direction one of the initial and crucial results is 

the Banach contraction mapping principle [1].Banach (1922) proved that every contraction in complete metric space has a unique 

fixed point. After this pivotal result, theory of fixed point theorems has been studied by many authors in many directions. In some 

papers, authors define new contractions and discuss the existence uniqueness of few points for such mappings. Instead of metric 

spaces, some authors investigate fixed point theorems on various spaces, such as cone metric spaces, metric space, quasi-metric 

spaces, hyper convex spaces etc. 

It is quite natural to consider generalization of the notion to metric 𝑑: 𝑋 × 𝑋 → [0, ∞). The question was, what must [0, ∞) be 

replaced by. In 1980 Bogdan Rzepecki[2] , in 1987 Shy-Der lin[3] and in 2007 Huang and Zhang [4] gave the same answer: 

Replace the real number with Banach space ordered by a cone, resulting in the so called cone metric. They also discussed some 

properties of convergence of sequence and proved the fixed point theorems of contractive mapping for cone metric spaces. Many 

results on fixed point theorems have been extended to cone metric spaces in [9, 10]. Recently, E. Karpinar [5], presented some 

fixed point theorems for self mappings satisfying some contractive condition on a cone Banach space. Thobet Abdelijawad, E. 

Karpinar, and Kenan Tas [6] have given some generalizations to this theorem. Neeraj Malviya and Sarla Chouhan [7] extended 

some point theorems to cone Banach space. Ali Mutlu and Normin Yolcu [8] proved the fixed point theorems ɸp operator for 

cone Banach space for self map. More precisely, they proved that for a closed and convex sub set C of a cone Banach space with 

the norm‖𝑋‖𝐶 = 𝑑(𝑥, 0). If there exist 𝑎, 𝑏, 𝑐, 𝑟𝑎𝑛𝑑 𝑇: 𝐶 → 𝐶 satisfies the conditions 0 ≤ ɸ𝑞(𝑟) + ɸ𝑞(𝑎) + 2[ɸ𝑞(𝑏) + ɸ𝑞(𝑐)] 
and  

 𝑎ɸ𝑝[𝑑(𝑇𝑥, 𝑇𝑦)] + 𝑏ɸ𝑝[𝑑(𝑥, 𝑇𝑥)] + 𝑐ɸ𝑝[𝑑(𝑦, 𝑇𝑦)] ≤ 𝑟ɸ𝑝[𝑑(𝑥, 𝑦) 

 For all 𝑥, 𝑦 ∈ 𝐶, then 𝑇 has at least one fixed point. 

Rahul Tiwari and D. P. Shukla[11] , obtained coincidence points and common fixed points in cone Banach spaces which is 

generalizes and extends the results of [6]. 

 The purpose of this paper is to generalize, extend and improves the results of [8]. 

 

II. PRELIMINARY NOTES 
Definition 2.1 [4] Let (𝐸, ‖. ‖) be a real Banach space. A sub set 𝑃 of 𝐸 is said to be a cone if and only if , 

(i) 𝑃 is closed,  non empty and 𝑃 ≠ {0}, 

(ii) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0 and𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃, 
(iii) 𝑃 ∩ (−𝑃) = {0}. 
For a given cone 𝑃 ⫃ 𝐸, we define a partial ordering ≤ with respect to 𝑃 by𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. We shall write 𝑥 < 𝑦 

to indicate that 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦 while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃, where 𝑖𝑛𝑡𝑃 denotes the interior of 𝑃. 

The cone 𝑃 is called normal if there is a number 𝑘 > 0 such that 

                                0 ≤ 𝑥 ≤ 𝑦 ⇒ ‖𝑥‖ ≤ 𝐾‖𝑦‖, for all 𝑥, 𝑦 ∈ 𝐸. 
The least positive number satisfying the above is called the normal constant. 

Definition 2.2[4]: Let 𝑋 be a non empty set. Suppose that, the mapping 𝑑: 𝑋 × 𝑋 → 𝐸 is said to be cone metric on𝑋, if it is 

satisfies the following conditions: 

(i) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋; 

(ii) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 
(iii) 𝑑(𝑥, 𝑦) = (𝑦, 𝑥) for all𝑥, 𝑦 ∈ 𝑋; 

(iv) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
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Then the pair 𝑑(𝑋, 𝑑) is called cone metric spaces. It is quite natural to consider cone normed spaces (CNS). 

Definition 2.3[5]: Let 𝑋 be a vector space over R. Suppose the mapping ‖. ‖𝐶: 𝑋 → 𝐸 satisfies 

  (i)    ‖𝑋‖𝐶 ≥ 0 for 𝑥 ∈ 𝑋, 
 (ii) )  ‖𝑋‖𝐶 = 0, 

 (iii)   ‖𝑥 + 𝑦‖𝐶 ≤   ‖𝑥‖𝐶 +  ‖𝑦‖𝐶   for all 𝑥, 𝑦 ∈ 𝑋 

  (iv)    ‖𝐾𝑥‖𝐶 = |𝐾|‖𝑥‖𝐶. 

Then ‖. ‖𝐶 is called a cone norm on X and the pair (𝑋, ‖. ‖𝐶) is called a cone normed space. Here we observed that every CNS is 

CMS of course 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖𝐶. 

Definition 2.4[5]: Let (𝑋, ‖. ‖𝐶) be a cone normed space, 𝑥 ∈ 𝑋 and {𝑥𝑛}≥1be a sequence in 𝑋. Then, 

  (i) {𝑥𝑛}≥1 Converges to 𝑥 whenever 𝑐 ∈ 𝐸 with 0 ≪ 𝑐, there is a natural number N such that    

                   ‖𝑥𝑛 − 𝑥‖𝐶  ≪ 𝑐 for all 𝑛 ≥ 𝑁. It is denoted by lim
𝑛→∞

𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥; 

 (ii) {𝑥𝑛}≥1 is a Cauchy sequence whenever for every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐, there is a natural  

        number N, such that    ‖𝑥𝑛 − 𝑥‖𝐶  ≪ 𝑐 for all 𝑛, 𝑚 ≥ 𝑁; 
(iii) Let (𝑋, ‖. ‖𝐶) is a complete cone normed space if every Cauchy sequence is convergent. 

Note: The complete cone metric spaces will be called cone Banach space. 

Lemma 2.5[4]: Let (𝑋, ‖. ‖𝐶) be a cone normed space,𝑃 be a normal cone with normal constant 𝐾 and let {𝑥𝑛} be a sequence in 𝑋. 
Then, 

(i) the sequence {𝑥𝑛} converges to 𝑥 if and only if ‖𝑥𝑛 − 𝑥‖𝐶 → 0 𝑎𝑠 𝑛 → ∞, 
(ii) the sequence {𝑥𝑛} Cauchy  if and only if ‖𝑥𝑛 − 𝑥𝑚‖𝐶 → 0 𝑎𝑠 𝑛, 𝑚 → ∞, 
(iii) the sequence {𝑥𝑛} converges to 𝑥 and the sequence {𝑦𝑛} converges to𝑦, then  

                                              ‖𝑥𝑛 − 𝑦𝑛‖𝐶  → i ‖𝑥 − 𝑦‖𝐶. 

Definition 2.6[5]: Let 𝐶 be a closed and convex sub set of a cone Banach space with the norm ‖. ‖𝐶  and 𝑇: 𝐶 → 𝐶 be a mapping 

satisfying the condition  

                                         ‖𝑇𝑥 − 𝑇𝑦‖𝐶 ≤ ‖𝑥 − 𝑦‖𝐶 , ∀ 𝑥, 𝑦 ∈ 𝐶 ………………… (1) 

Then 𝑇 is called non expansive if it satisfies the condition (1). 

Definition 2.7[8]: Let E be Banach algebra and (𝐸, ‖. ‖𝐶) be a Banach space. And ɸ𝑝: 𝐸 → 𝐸 is an increasing and positive 

mapping, i.e. 

                        ɸ𝑝(𝑥) = ‖𝑥‖𝑝−2𝑥, 𝑤ℎ𝑒𝑟𝑒 
1

𝑝
 +

1

𝑞
= 1 

If 𝐸 = 𝑅. Thenɸ𝑝: 𝑅 → 𝑅 is a 𝑝 −Laplacian operator 𝑖. 𝑒.    ɸ𝑝(𝑥) = |𝑥|𝑝−2𝑥 for some 𝑝 > 1. 

By using this definition, the operator ɸ𝑝: 𝐸 → 𝐸 holds the following holds: 

(1) if 𝑥 ≤ 𝑦, thenɸ𝑝(𝑥) ≤ ɸ𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝐸, 

(ii) ɸ𝑝 is a continuous bijection and its inverse mapping is also continuous, 

(iii) ɸ𝑝(𝑥𝑦) = ɸ𝑝(𝑥)ɸ𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝐸, 

(iv) ɸ𝑝(𝑥 + 𝑦) ≤  ɸ𝑝(𝑥) + ɸ𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝐸. 
 

III. MAIN RESULTS 
The results which will give are generalization of the theorems [6] and [7] of [8]. 

Theorem 3.1:  Let 𝐶 be a closed and convex sub set of a cone Banach space 𝑋 with the norm ‖. ‖𝐶  . Let 𝐸 be a Banach algebra 

and ɸ𝑝: 𝐸 → 𝐸 and 𝑇1, 𝑇2: 𝐶 → 𝐶 be any two mapping which satisfies the condition: 

                          ɸ𝑝[𝑑(𝑥, 𝑇1𝑥)] + ɸ𝑝[𝑑(𝑦, 𝑇2𝑦)] ≤ 𝐾ɸ𝑃[𝑑(𝑥, 𝑦)]……………………. (2) 

For all 𝑥, 𝑦 ∈ 𝐶, where 2𝑝−1 ≤ 𝑘 < 4𝑝−1 in 𝐸. Then 𝑇1 and 𝑇2  have at least  common fixed  

point. 

Proof: Let 𝑥0  ∈ 𝐶 be arbitrary. We define a sequence {𝑥2𝑛} in the following way: 

                                     𝑥2𝑛+1 = 
𝑥2𝑛+𝑇1𝑥2𝑛

2 
 , 𝑛 = 0,1,2 … … … … … ………………….......... (3) 

And  

              𝑥2𝑛+2 = 
𝑥2𝑛+1+𝑇2𝑥2𝑛+1

2 
 , 𝑛 = 0,1,2 … … … … … …  ……………….. (4) 

Then we notice that 

                           𝑥2𝑛 − 𝑇1𝑥2𝑛 = 2{ 𝑥2𝑛   −  
𝑥2𝑛+𝑇1𝑥2𝑛

2 
 }  

     = 2{𝑥2𝑛 − 𝑥2𝑛+1} …………………………...................  (5) 

And 

                        𝑥2𝑛+1−𝑇2𝑥2𝑛+1     =   2 { 𝑥2𝑛+1 − 
𝑥2𝑛+1+𝑇2𝑥2𝑛+1

2 
 } 
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      =   2{ 𝑥2𝑛+1 −  𝑥2𝑛+2 }………………………………   (6) 

 This yields that 

                         𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)   = ‖𝑥2𝑛 − 𝑇1𝑥2𝑛‖𝐶 

                 = 2‖𝑥2𝑛 − 𝑥2𝑛+1‖𝐶  

                                                 =2𝑑(𝑥2𝑛,𝑥2𝑛+1) ………………………………………. (7) 

And  

     𝑑(𝑥2𝑛+1, 𝑇2𝑥2𝑛+1)   = ‖𝑥2𝑛+1 − 𝑇2𝑥2𝑛+1‖𝐶  

               = 2‖𝑥2𝑛+1 − 𝑥2𝑛+2‖𝐶  

                                                = 2𝑑(𝑥2𝑛+1,𝑥2𝑛+2)…………………………………….  (8) 

Substitute 𝑥 = 𝑥2𝑛−1 and 𝑦 = 𝑥2𝑛 in (2).Then we get 

                ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑇1𝑥2𝑛−1)] + ɸ𝑝[𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)]  ≤ 𝑘ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑥2𝑛)] 

   By (7), we can obtain 

                    ɸ𝑝[2𝑑(𝑥2𝑛−1, 𝑥2𝑛)] + ɸ𝑝[2𝑑(𝑥2𝑛 , 𝑥2𝑛+1)]  ≤ 𝑘ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑥2𝑛)] 

 From the property of ɸ𝑝 operator, 

        ɸ𝑝2[𝑑(𝑥2𝑛−1, 𝑥2𝑛) + 𝑑(𝑥2𝑛, 𝑥2𝑛+1)] ≤  𝑘ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑥2𝑛)] 
 When the essential arrangement is applied, we can get 

                               𝑑(𝑥2𝑛 , 𝑥2𝑛+1) ≤ (
ɸ𝑞(𝑘)

2
− 1) 𝑑(𝑥2𝑛−1, 𝑥2𝑛). 

Repeating this relation 

                                𝑑(𝑥2𝑛 , 𝑥2𝑛+1) ≤ (
ɸ𝑞(𝑘)

2
− 1) 𝑑(𝑥0, 𝑥1)…………………………….(9) 

 Let 𝑚 > 𝑛, then from (9), we have 

               𝑑(𝑥2𝑚, 𝑥2𝑛) ≤ 𝑑(𝑥2𝑚 , 𝑥2𝑚−1) + ⋯ … … … … … … … … … … … + 𝑑(𝑥2𝑛+1, 𝑥2𝑛) 

             ≤ [(
ɸ𝑞(𝑘)

2
− 1)

2𝑚−1

+ ⋯ … … … … … … … . . + (
ɸ𝑞(𝑘)

2
− 1)

2𝑛

] 𝑑(𝑥1, 𝑥0) 

                                   ≤  
(

ɸ𝑞(𝑘)

2
−1)

2− 
ɸ𝑞(𝑘)

2

 𝑑(𝑥1, 𝑥0).  

 Since 2𝑝−1 ≤ 𝑘 < 4𝑝−1, {𝑥2𝑛} is a Cauchy sequence in C. Because C is a closed and convex sub set of a cone Banach space, thus 
{𝑥2𝑛} sequence converges to some 𝑥∗ ∈ 𝐶.That is 

 𝑥2𝑛 →   𝑥∗, 𝑥∗  ∈ 𝐶.  

Regarding the inequality 

                               𝑑(𝑥∗, 𝑇1𝑥2𝑛) ≤ 𝑑(𝑥∗, 𝑥2𝑛) + 𝑑(𝑥2𝑛, 𝑇1𝑥2𝑛) 

From (7),  

                     𝑑(𝑥∗, 𝑇1𝑥2𝑛) ≤ 𝑑(𝑥∗, 𝑥2𝑛) + 2𝑑(𝑥2𝑛, 𝑥2𝑛+1) as𝑛 → ∞. 
then    𝑑(𝑥∗, 𝑇1𝑥2𝑛) = 0.Thus, 𝑇1𝑥2𝑛 → 𝑥∗. 

Finally, we substitute 𝑥 = 𝑥∗ and 𝑦 = 𝑥2𝑛 in (2). Then we get 

                               ɸ𝑝[𝑑(𝑥∗, 𝑇1𝑥∗)] + ɸ𝑝[𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)]  ≤ 𝑘ɸ𝑝[𝑑(𝑥∗, 𝑥2𝑛)] 

From the property of ɸ𝑝 mapping, 

                                  ɸ𝑝[𝑑(𝑥∗, 𝑇1𝑥∗) + 𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)]  ≤ 𝑘ɸ𝑝[𝑑(𝑥∗, 𝑥2𝑛)] 
By using (7), we obtain  

                          𝑑(𝑥∗, 𝑥2𝑛) + 2𝑑(𝑥2𝑛 , 𝑥2𝑛+1) ≤ ɸ𝑞(𝑘) . When 𝑛 → ∞, 𝑑(𝑥∗, 𝑇1𝑥∗) = 0. Then 𝑥∗ =  𝑇1𝑥∗. Hence  𝑥∗  has at least a 

fixed point of 𝑇1.. 

Similarly, we can show that 𝑇2𝑥∗ =  𝑥∗.Thus 𝑇1𝑥∗ =  𝑥∗ = 𝑇2𝑥∗. 
Hence  𝑥∗ is common fixed point of 𝑇1and 𝑇2.This completes the proof of the theorem. 

Theorem 3.2:  Let 𝐶 be a closed and convex sub set of a cone Banach space 𝑋 with the norm ‖. ‖𝐶  . Let 𝐸 be a Banach algebra 

and ɸ𝑝: 𝐸 → 𝐸 and 𝑇1, 𝑇2: 𝐶 → 𝐶 be any two mapping which satisfies the condition: 

           𝑎ɸ𝑝[𝑑(𝑇1𝑥, 𝑇2𝑦)] + 𝑏ɸ𝑝[𝑑(𝑥, 𝑇1𝑥)] + 𝑐ɸ𝑝[𝑑(𝑦, 𝑇2𝑦)] ≤ 𝑟ɸ𝑝[𝑑(𝑥, 𝑦)] for all 𝑥, 𝑦 ∈ 𝐶, where 0 ≤ ɸ𝑞 < ɸ𝑞(𝑎) +

 2[ɸ𝑞(𝑏) + ɸ𝑞(𝑐)] .Then 𝑇1 and 𝑇2  have at least common fixed point. 

Proof: Construct a sequence {𝑥2𝑛}as in proof of theorem 3.1. Then  

                             𝑥2𝑛 − 𝑇1𝑥2𝑛−1 = 1/2( 𝑥2𝑛−1 − 𝑇1𝑥2𝑛−1)  
Thus;  

 𝑑(𝑥2𝑛 − 𝑇1𝑥2𝑛−1 ) = 1/2𝑑( 𝑥2𝑛−1 − 𝑇1𝑥2𝑛−1) ………………………………………(10) 

In addition, we know that   

              𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)    = 2𝑑(𝑥2𝑛 , 𝑥2𝑛+1).Thus the triangle inequality, implies that 
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             𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛) − 𝑑(𝑥2𝑛 − 𝑇1𝑥2𝑛−1 ) ≤ 𝑑(𝑇1𝑥2𝑛−1 , 𝑇2𝑥2𝑛) 

Then from (10) and (7) , we get 

     2𝑑(𝑥2𝑛 , 𝑥2𝑛+1) − 𝑑(𝑥2𝑛−1 − 𝑥2𝑛 ) ≤ 𝑑(𝑇1𝑥2𝑛−1 , 𝑇2𝑥2𝑛) 

By substituting 𝑥 = 𝑥2𝑛−1 and 𝑦 =  𝑥2𝑛 in (10) 

𝑎ɸ𝑝[𝑑(𝑇1𝑥2𝑛−1, 𝑇2𝑥2𝑛)] + 𝑏ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑇1𝑥2𝑛−1)] + 𝑐ɸ𝑝[𝑑(𝑥2𝑛, 𝑇2𝑥2𝑛)] ≤ 𝑟ɸ𝑝[𝑑(𝑥2𝑛−1,𝑥2𝑛)] 

As in the proof of theorem (9) we can obtain  

                          𝑑(𝑥2𝑛 , 𝑥2𝑛+1)  ≤ [
ɸ𝑞(𝑟)+ɸ𝑞(𝑎)−2ɸ𝑞(𝑏)

2ɸ𝑞(𝑎)+ɸ𝑞(𝑐)
]  𝑑(𝑥2𝑛−1,𝑥2𝑛)  for all 𝑛 ≥ 1. Repeating this relation, we get    

𝑑(𝑥2𝑛 , 𝑥2𝑛+1)  ≤ ℎ𝑛 𝑑(𝑥0,𝑥1)………………………………………(11) 

     Where h= [
ɸ𝑞(𝑟)+ɸ𝑞(𝑎)−2ɸ𝑞(𝑏)

2ɸ𝑞(𝑎)+ɸ𝑞(𝑐)
] < 1. 

Let 𝑚 > 𝑛, then from (11), we have 

               𝑑(𝑥2𝑚, 𝑥2𝑛) ≤ 𝑑(𝑥2𝑚 , 𝑥2𝑚−1) + ⋯ … … … … … … … … … … … + 𝑑(𝑥2𝑛+1, 𝑥2𝑛) 

              ≤ [ℎ2𝑚−1 + ⋯ … … … … … … … . . +ℎ2𝑛]𝑑(𝑥1, 𝑥0) 

                                    ≤ 
ℎ2𝑛

1−ℎ
 𝑑(𝑥1, 𝑥0). …………………………………………..(12) 

Thus {𝑥2𝑛} is a Cauchy sequence in C and thus it is converges to some 𝑥∗ ∈ 𝐶. As in the proof of theorem 3.1, we can show 𝑇1𝑥∗ =
𝑥∗ and also we can show𝑇1𝑥∗ = 𝑥∗ = 𝑇2𝑥∗. 

Thus, 𝑥∗has at least one common fixed point of 𝑇1and 𝑇2.This completes the proof of the theorem. 

Theorem 3.3:  Let 𝐶 be a closed and convex sub set of a cone Banach space 𝑋 with the norm ‖. ‖𝐶  . Let 𝐸 be a Banach algebra 

and ɸ𝑝: 𝐸 → 𝐸 and 𝑇1, 𝑇2: 𝐶 → 𝐶 be any two mapping which satisfies the condition: 

           𝑎ɸ𝑝[𝑑(𝑇1𝑥, 𝑇2𝑦)] + 𝑏ɸ𝑝[𝑑(𝑥, 𝑇2𝑦)] + 𝑐ɸ𝑝[𝑑(𝑦, 𝑇1𝑥)] ≤ 𝑟ɸ𝑝[𝑑(𝑥, 𝑦)] for all 𝑥, 𝑦 ∈ 𝐶, where 0 ≤ ɸ𝑞 < ɸ𝑞(𝑎) +

 2[ɸ𝑞(𝑏) + ɸ𝑞(𝑐)] .Then 𝑇1 and 𝑇2  have at least common fixed point. 

Proof: Construct a sequence {𝑥2𝑛}as in proof of theorem 3.1. Then  

                             𝑥2𝑛 − 𝑇1𝑥2𝑛−1 = 1/2( 𝑥2𝑛−1 − 𝑇1𝑥2𝑛−1)  
Thus;  

 𝑑(𝑥2𝑛 − 𝑇1𝑥2𝑛−1 ) = 1/2𝑑( 𝑥2𝑛−1 − 𝑇1𝑥2𝑛−1) ………………………………………(13) 

In addition, we know that   

              𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛)    = 2𝑑(𝑥2𝑛 , 𝑥2𝑛+1).Thus the triangle inequality, implies that 

             𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛) − 𝑑(𝑥2𝑛 − 𝑇1𝑥2𝑛−1 ) ≤ 𝑑(𝑇1𝑥2𝑛−1 , 𝑇2𝑥2𝑛) 

Then from (10) and (7) , we get 

     2𝑑(𝑥2𝑛 , 𝑥2𝑛+1) − 𝑑(𝑥2𝑛−1 − 𝑥2𝑛 ) ≤ 𝑑(𝑇1𝑥2𝑛−1 , 𝑇2𝑥2𝑛) 

By substituting 𝑥 = 𝑥2𝑛−1 and 𝑦 =  𝑥2𝑛 in (13) 

𝑎ɸ𝑝[𝑑(𝑇1𝑥2𝑛−1, 𝑇2𝑥2𝑛)] + 𝑏ɸ𝑝[𝑑(𝑥2𝑛−1, 𝑇2𝑥2𝑛)] + 𝑐ɸ𝑝[𝑑(𝑥2𝑛 , 𝑇1𝑥2𝑛−1)] ≤ 𝑟ɸ𝑝[𝑑(𝑥2𝑛−1,𝑥2𝑛)] 
As in the proof of theorem (9) we can obtain  

                          𝑑(𝑥2𝑛 , 𝑥2𝑛+1)  ≤ [
ɸ𝑞(𝑟)+ɸ𝑞(𝑎)−2ɸ𝑞(𝑏)

2ɸ𝑞(𝑎)+ɸ𝑞(𝑐)
]  𝑑(𝑥2𝑛−1,𝑥2𝑛)  for all 𝑛 ≥ 1. Repeating this relation, we get 𝑑(𝑥2𝑛 , 𝑥2𝑛+1)  ≤

ℎ𝑛 𝑑(𝑥0,𝑥1)………………………………………(11) 

     Where h = [
ɸ𝑞(𝑟)+ɸ𝑞(𝑎)−2ɸ𝑞(𝑏)

2ɸ𝑞(𝑎)+ɸ𝑞(𝑐)
] < 1. 

Let 𝑚 > 𝑛, then from (11), we have 

               𝑑(𝑥2𝑚, 𝑥2𝑛) ≤ 𝑑(𝑥2𝑚 , 𝑥2𝑚−1) + ⋯ … … … … … … … … … … … + 𝑑(𝑥2𝑛+1, 𝑥2𝑛) 

              ≤ [ℎ2𝑚−1 + ⋯ … … … … … … … . . +ℎ2𝑛]𝑑(𝑥1, 𝑥0) 

                                    ≤ 
ℎ2𝑛

1−ℎ
 𝑑(𝑥1, 𝑥0). …………………………………………..     (12) 

Thus {𝑥2𝑛} is a Cauchy sequence in C and thus it is converges to some 𝑥∗ ∈ 𝐶.  
The rest of the proof is similar to the proof of the theorem 3.2. 
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